压水堆一回路注锌条件下硅酸锌沉积的热力学分析Thermodynamic Analysis of Zinc Silicate Deposition under the Condition of Zinc Injection in the Primary Circuit of Pressurized Water Reactor
王智麟,洪亮,金德升,刘虓瀚,宋晓芳,张胜寒
摘要(Abstract):
锌离子注入技术可有效减少压水堆一回路腐蚀和职业辐照剂量。但当燃料棒上发生过冷沸腾时,注入的锌离子具有与一回路冷却剂中的微量硅在燃料棒上形成硅酸锌沉积,导致燃料包壳温度升高及腐蚀加剧的风险。通过热力学方法计算锌注入条件下Zn_2SiO_4的溶解度,分析了Zn_2SiO_4的沉积风险。溶解度计算结果表明,锌离子注入量为40×10~(-9),一回路冷却剂中含硅量限值为1×10~(-6)时,不形成Zn_2SiO_4沉淀;但当燃料棒表面锌和硅的浓缩倍率达到10倍时,就会有Zn_2SiO_4沉积的风险。
关键词(KeyWords): 锌离子注入;溶解度;水化学;压水堆
基金项目(Foundation):
作者(Author): 王智麟,洪亮,金德升,刘虓瀚,宋晓芳,张胜寒
参考文献(References):
- [1]Dawn E.Janney,Douglas L.Porter.Characterization of phases in‘crud’from boiling-water reactors by transmission electron microscopy[J].Journal of Nuclear Materials,362(2007),104-115.
- [2]Brobst G.E.,Stern.S.Operating Limits for Silica,Calcium,Aluminum and Magnesium in PWRs[R].Palo Alto:Electric Power Research Institute,TR-107992,1997.
- [3]Frattini.P.Status Report on Estimation of Solubility for Zinc Silicates in PWR Primary Coolant[R].Palo Alto:Electric Power Research Institute,TE-114135,1999.
- [4]Tanger J C,Helgeson H C.Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures;revised equations of state for the standard partial molal properties of ions and electrolytes[J]American Journal of Science,1988:288(19).
- [5]Shock E L Helgeson H C.Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures:Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1 000℃[J].Geochimica et Cosmochimica Acta,1988:52(8):2009-2036.
- [6]Shock E L Helgeson H C,Sverjensky D A.Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures:Standard partial molal properties of inorganic neutral species[J].Geochimica et Cosmochimica Acta,1989,53(9):2157-2183.
- [7]Shock E L,Oelkers E H,Johnson J W,et al.Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures.Effective electrostatic radii,dissociation constants and standard partial molal properties to 1 000℃and 5 kbar[J].Journal of the Chemical Society,Faraday Transactions,1992,88(6):803-826.
- [8]Palmer D A.Aqueous Systems at Elevated Temperatures and Pressures[M].Elsevier Academic Press,2004.
- [9]Speight J G.Lange's Handbook of Chemistry,Sixteenth Edition[M].Mc Graw-Hill,New York,2005.
- [10]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
- [11]Miyajima K,Hirano H.Thermodynamic Consideration on the Effect of Zinc Injection into PWR Primary Coolant for the Reduction of Radiation Buildup and Corrosion Control[J].Corrosion,2001(01143).
- [12]Beverskog B,Puigdomenech I.Revised Pourbaix Diagrams for Zinc at 25-300℃[J].Corrosion Science,1997,39(1):107-114.
- [13]Gunnarsson I.,Arnórsson S.Amorphous silica solubility and the thermodynamic properties of H4Si O4°in the range of 0°to 350℃at Psat[J].Geochimica Et Cosmochimica Acta,2000,64(13):2295-2307.
- [14]Palmer D A,Anovitz L M.Solubility of Zinc Silicate and Zinc Ferrite in Aqueous Solution to High Temperatures[J].Journal of Solution Chemistry,2009,38(7):869-892.
- [15]Wells D.Behavior of Zinc and Silica in the PWR Primary System:PWR Chemistry Technical Strategy Group Report[R].Palo Alto:Electric Power Research Institute,3002015884,2019.
- [16]Rimstidt J D,Gangue mineral transport and deposition[J].Geochemistry of Hydrothermal Ore Deposits,1997.
- [17]Bénézeth P,Palmer D A,Xiao C.New Measurements of the Solubility of Zinc Oxide from 150 to 350℃[J].Journal of Solution Chemistry,2002,31(12):947-973.
- [18]Hanzawa Y,Hiroishi D,Matsuura C,et al,Hydrolysis of Zinc Ion and Solubility of Zinc Oxide in High-Temperature Aqueous Systems[J].Nuclear Science&Engineering the Journal of the American Nuclear Society,1997,127(3):292-299.
- [19]Ziemniak S E,Jones M E,Combs K.Zinc(Ⅱ)oxide solubility and phase behavior in aqueous sodium phosphate solutions at elevated temperatures[J].Journal of Solution Chemistry,1992,21(11):1153-1176.