拉丁超立方抽样在非能动系统可靠性分析中的应用与发展Application and Development of Latin Hypercube Sampling in Passive System Reliability Analysis
蒋立志,蔡琦,张永发,时浩
摘要(Abstract):
拉丁超立方抽样(Latin Hypercube Sampling,LHS)方法具有较好的空间填充特性和良好的概率性质,广泛应用于计算机仿真领域,以解决复杂系统计算机仿真的巨大运算代价问题和复杂系统的精确替代模型建立问题。本文介绍了LHS方法在非能动系统可靠性分析中的优势,综述了LHS的改进方法、优化方法及样本扩展方法,给出LHS方法在核能领域的应用及存在的问题。最后,指出LHS方法应用于非能动系统可靠性分析中的发展趋势与方向。
关键词(KeyWords): 拉丁超立方抽样;非能动系统;可靠性分析
基金项目(Foundation):
作者(Author): 蒋立志,蔡琦,张永发,时浩
参考文献(References):
- [1]陈娟,周涛,刘亮等.非能动系统可靠性分析方法比较[J].华电技术,2013,35(2):14-20.
- [2]Zio E,Pedroni N.How to effectively compute the reliability of a thermal-hydraulic passive system[J].Nuclear Engineering and Design,2011,241:310-327.
- [3]Zio E,Pedroni N.Estimation of the functional failure probability of a thermal-hydraulic passive system by Subset Simulation[J].Nuclear Engineering and Design,2009,239:580-599.
- [4]Dam E R V,Husslage B,Meissen H.Maximin Latin hypercube designs in two dimensions[J].Operations Research,2007,55(1):158-169.
- [5]Mcka M D,Beckma R J,Conove W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,21(2):239-245.
- [6]Zio E.可靠性与风险分析蒙特卡罗方法[M].北京:国防工业出版社,2014:103-105.
- [7]陈浩.复杂结构拉丁超立方设计的构造[D].天津:南开大学博士学位论文,2013:1-9.
- [8]Helton J C,Davis F J.Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J].Reliability Engineering and System Safety,2003,81:23-69.
- [9]Helton J C,Davis F J,Johnson J D.A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling[J].Reliability Engineering and System Safety,2005,81:305-330.
- [10]Imam R L,Conover W J.A distribution-free approach to inducing rank correlation among input variables[J].Communication in Statistics-Simulation and Computation,1982,11(3):311-334.
- [11]Olsson A M J.Latin hypercube sampling for stochastic finite element analysis[J].Journal of Engineering Mechanics,2002,128(1):121-125.
- [12]Rajabi M M,Ataie-Ashtiani B,Janssen H.Efciency enhancement of optimized Latin hypercube sampling strategies:Application to Monte Carlo uncertainty analysis and meta-modeling[J].Advances in Water Resources,2015,76:127-139.
- [13]Huntington D E,Lyrintzis C S.Improvements to and limitations for Latin hypercube sampling[J].Probabilistic Engineering Mechanics,1998,13(4):245-253.
- [14]Hernandez A S,Lucas T W,Sanchez P J.Selecting random Latin hypercube dimensions and designs through estimation of maximum absolute pairwise correlation[J].Simulation Conference,2012,7202(4):25.
- [15]Petelet M,Loos B,Asserin O,et al.Latin hypercube sampling with inequality constraints[J].Asta Advances in Statistical Analysis,2010,94(4):325-339.
- [16]Sallaberry C J,Helton J C,Stephen C H.Extension of Latin Hypercube Samples with correlated variables[J].Reliability Engineering and System Safety,2007,93:1047-1059.
- [17]Shields M D,Zhang J X.The generalization of Latin hypercube sampling[J].Reliability Engineering and System Safety,2016,148:96-108.
- [18]Deutsch J L,Deutsch C V.Latin hypercube sampling with multidimensional uniformity[J].Journal of Statistical Planning and Inference,2012,142:763-772.
- [19]Qian Z G.Nested Latin hypercube designs[J].Biometrika,2009,96(4):957-970.
- [20]杨金雨.复杂计算机试验设计与筛选设计的构造[D].天津:南开大学博士学位论文,2013:1-13.
- [21]黄恒振.某些复杂试验的设计与分析[D].天津:南开大学博士学位论文,2014:1-5.
- [22]Rennen G,Husslage B,Hertog D D,et al.Nested maximin Latin hypercube designs[J].Struct Multidisc Optim,2010,41:371-395.
- [23]Ai M Y,He Y Z,Liu S M.Some new classes of orthogonal Latin hypercube designs[J].Journal of Statistical Planning and Inference,2012,142:2809-2818.
- [24]Owen A B.Controlling correlations in Latin hypercube samples[J].Journal of the American Statistical Association,1994,89:1517-1522.
- [25]Ye K Q.Orthogonal column Latin hypercubes and their application in computer experiments[J].Journal of the American Statistical Association,1998,93:1430-1439.
- [26]Tang.Orthogonal array-based Latin hypercubes[J].Journal of American Statistical Association,1993,88:1392-1397.
- [27]Stelios G D.Orthogonal Latin hypercube designs from generalized orthogonal designs[J].Journal of Statistical Planning and Inference,2009,139:1530-1540.
- [28]Yin Y H,Liu M Q.Orthogonal Latin hypercube designs for Four-polynomial models[J].Journal of Statistical Planning and Inference,2013,143:307-314.
- [29]Ranjan P,Spencer N.Space-filling Latin hypercube designs based on randomization restrictions in factorial experiments[J].Statistics and Probability Letters,2014,94:239-247.
- [30]Jourdan A,Franco J.Optimal Latin hypercube designs for the Kullback-Leibler criterion[J].Asta Advance Statistical Analysis,2010,94:341-351.
- [31]Bates S J,Sienz J,Langley D S.Formulation of the Audze-Eglais uniform Latin hypercube design of experiments[J].Advances in Engineering Software,2003,34:493-506.
- [32]Hess S,Train K E,Polak J W.On the use of a modied Latin hypercube sampling(MLHS)method in the estimation of a mixed logit model for vehicle choice[J].Transportation Research Part B,2006,40:147-163.
- [33]方磊.基于LHS抽样的不确定性分析方法在概率安全评价中的应用研究[D].合肥:中国科学技术大学博士学位论文,2015:11-20.
- [34]Jin R,Chen W,Sudjianto A.An efcient algorithm for constructing optimal design of computer experiments[J].Journal of Statistical Planning and Inference,2005,134:268-284.
- [35]Husslage B G M,Rennen G,Dam E R V,et al.Space-filling Latin hypercube designs for computer experiments[J].Optimal Engineering,2011,12:611-630.
- [36]Morris M D,Mitchell T J.Exploratory designs for computer experiments[J].Journal of Statistical Planning and Inference,1992,43:381-402.
- [37]Bates S J,Sienz J,Langley D S.Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm[C].In 5th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference,2004:1-7.
- [38]Liefvendahl M,Stocki R.A study on algorithms for optimization of Latin hypercubes[J].Journal of Statistical Planning and Inference,2006,136(9):3231-3247.
- [39]Chen R B,Hsieh D N,Ying H,et al.Optimizing Latin hypercube designs by particle swarm[J].Statistics and Computing,2013,23:663-676.
- [40]Mahdi A,Mohammad H,Tayarani N.An adaptive memetic particle swarm optimization algorithm fornding large-scale Latin hypercube designs[J].Engineering Applications of Articial Intelligence,2014,36:222-237.
- [41]Rajabi M M,Ataie-Ashtiani B.Sampling efciency in Monte Carlo based uncertainty propagation strategies:application in sea water intrusion simulations[J].Advances in Water Resources,2014,67:46-64.
- [42]Pleming J B,Manteufel R D.Replicated Latin Hypercube Sampling[C].In:46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics&Materials Conference,2005:18-21.
- [43]Dalbey K R,Karystinos G N.Fast Generation of Space-filling Latin Hypercube Sample Designs[C].In:3th AIAA/ISSMO multidisciplinary analysis optimization conference,2010:13-15.
- [44]Hossain F,Anagnostou E N,Bagtzoglou A C.On Latin hypercube sampling for efcient uncertainty estimation of satellite rainfall observations in flood prediction[J].Computers and Geosciences,2006,32:776-792.
- [45]Olsson A,Sandberg G,Dahlblom O.On Latin hypercube sampling for structural reliability analysis[J].Structural Safety,2003,25:47-68.
- [46]Choi S K,Grandhi R V,Canfield R A,et al.Polynomial chaos expansion with Latin hypercube sampling for estimating response variability[J].AIAA Journal,2004,42(6):1191-1198.
- [47]黄昌蕃,匡波.非能动安全系统可靠性评估方法初步研究[J].核安全,2015,1(1):35-41.
- [48]Marques M,Pignatel J F,Saignes P,et al.Methodology for the evaluation of a passive system and its integration into a probabilistic safety assessment[J].Nuclear Engineering and Design,2005,235:2612-2631.
- [49]Zio E,Pedroni N.An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems[J].Reliability Engineering and System Safety,2010,95:1300-1313.
- [50]Pedroni N,Zio E,Apostolakis G E.Comparison of bootstrapped Articial Neural Networks and quadratic Response Surfaces for the estimation of the functional failure probability of a thermal-hydraulic passive system[J].Reliability Engineering and System Safety,2010,95(4):386-395.