停堆碱性运行对“华龙一号”CIPS风险的影响研究Study on the Effect of Alkali Shutdown Operation on HPR1000 CIPS Risk
曹建华,王华鑫,毛玉龙,金德升,胡艺嵩,蒙舒祺
摘要(Abstract):
为评估中广核“华龙一号”停堆碱性控制对燃料组件垢致轴向功率偏移风险(CIPS)的影响,本文从理论分析和软件计算两个角度进行了研究。结果表明,压水堆停堆碱性控制会显著减少燃料组件表面污垢的释放,主要表现为抑制镍铁氧化物(Ni_xFe_(3-x)O_4)的分解。该机组停堆碱性控制状态下燃料组件表面的污垢继承率约为85%,最大硼沉积质量为0.099 7 kg,评估结果为CIPS低风险。但相比停堆酸性控制,实施停堆碱性控制后的压水堆在后续燃料循环内发生CIPS的风险更高,具体风险等级还需结合机组的热工水力参数和一回路水化学环境进行评估。
关键词(KeyWords): 压水堆核电站;停堆碱性控制;污垢继承率;CIPS
基金项目(Foundation): 国家自然科学基金(U20B0211,针对堆芯氧化腐蚀产物材料-热工-中子行为的多物理耦合机理);国家自然科学基金(52171085,模拟压水堆一回路冷却剂中燃料包壳管表面污垢沉积行为与机理研究)
作者(Author): 曹建华,王华鑫,毛玉龙,金德升,胡艺嵩,蒙舒祺
参考文献(References):
- [1] Fruzzetti. K. Benchmarking shutdown chemistry control recommendations in the pressurized water reactor primary water chemistry guidelines[R]. EPRI,Palo Alto,CA,2006:1011780.
- [2] Mailand I.,Venz. H. Shutdown chemistry-An approved method to reduce dose rate[C]. Proc. Int. Conf. Water Chem. Nuclear Reactors Syst.,Berlin,Germany,2008.
- [3] Fruzzetti K.P.,Frattini P.L.,Blok J. A review of the EPRI PWR water chemistry guidelines. Proc. Int. Conf. Water Chem. Nucl. Power Plants[C]. San Francisco,CA,USA,2004.
- [4]张勇.核电站氧化运行及效果分析[J].辐射防护,2003,23:55-59.
- [5]韩啸,巫小明.核电厂停堆过程中活化腐蚀产物的迁移与控制[J].设备与技术,2020,10:128-130.
- [6]李璐,张君南,张竞宇,等.典型压水堆运行工况下活化腐蚀产物及剂量率计算分析[J].核科学与工程,2018,38:540-545.
- [7]矫彩山,韩旭,侯洪国,等.压水堆燃料元件表面腐蚀产物沉积过程模型开发[J.]哈尔滨工程大学学报,2021,42:915-920.
- [8]范柄辰.压水堆核电站一回路主要活化腐蚀产物及水化学控制措施[J].中国核电,2020,13:356-370.
- [9]王海平,于淼,任丽娟.田湾核电厂一回路水化学优化与辐射源项控制[J].辐射防护,2018,38:415-421.
- [10]李璐.水冷反应堆主回路腐蚀产物活化及迁移模型的研究[D].北京:华北电力大学,2017.
- [11] Kim K.,Fruzzetti K,Garcia S.,et al. Assessment of EPRI water chemistry guidelines for new nuclear power plants[C]. NPC 2010,Quebec City,Canada,2010.
- [12] Deshon J. PWR Axial Offset Anomaly(AOA)Guidelines Revision 1[R]. EPRI,Palo Alto,CA. 2004.
- [13] Daniel M.W. Richard B.,Ryuji U. Impact of PWR primary water dissolved hydrogen concentration on fuel crud and boron accumulation[C],NPC 2016,Brighton,UK,2016.
- [14] Jeff D.,Dennis H.,Brian K.,et al. Pressurized water reactor fuel crud and corrosion modeling[J]. JOM,2011,63:64-72.
- [15] Lange T.L. Methodology for an advanced risk assessment of crud induced power shift using coupled multi-physics simulations and a Monte Carlo scenario analysis of the potential financial benefits[D]. The University of Tennessee,Knoxville,December 2017.
- [16] Ziemniak S.E.,Guilmette P.A.,Turcotte R.A.,et al. Oxidative dissolution of nickel metal in hydrogenated hydrothermal solutions[J]. Corros.Sci,2008,50:449-462.
- [17]中广核研究院有限公司,中国广核集团有限公司,中国广核电力股份有限公司.污垢行为分析软件[简称:CAMPSIS]V1.0[CP].中国:2021SR0623899,2021.
- [18] Jung Y.H.,Baik S.E.,Y.G. Jin. A study on the crystalline boron analysis in CRUD in spent fuel cladding using EPMA x-ray images[J]. Corros.Sci.Technol. 2020,19:1-7.
- [19] Zhou D.W.,Jones B.G. Boron concentration model and effects of boron holdup on axial offset anomaly(AOA)in PWRs[C]. Proc. 10th Int. Conf.on Nuclear Engineering,April 14-18,2002,Arlington,Virginia,USA,2009:829-834.