“华龙一号”堆型一回路系统58Co和60Co源项分析方法研究Study on 58Co and 60Co Source Term Analysis Method in the Primary Circuit of HPR1000
张晓茜,付鹏涛
摘要(Abstract):
压水堆核电厂一回路活化腐蚀产物源项是确定集体剂量和进行辐射防护优化的重要基础,也是反应堆审查取证的重要环节。本文阐述了“华龙一号”反应堆的设计特点,对比了与参考反应堆型的设计改进。通过分析中广核集团在运CPR1000/M310机组数十个循环的运行反馈数据特点及长期趋势,获得了冷却剂58Co和60Co源项的对数正态分布,以此为基础确定了“华龙一号”反应堆在稳态、瞬态和冷停堆工况下的一回路冷却剂~(58)Co和~(60)Co源项以及主管道的58Co和60Co沉积源项。结合反应堆的设计特点,使用中广核集团自主开发的CAMPSIS程序分别计算了“华龙一号”和CPR1000的一回路~(58)Co和~(60)Co源项,进而得到了调节系数对运行反馈统计结果进行了修正。本研究确定的以同类机组的源项运行数据反馈和机理分析相结合的方法,为新型反应堆研发中源项分析提供了重要参考价值。
关键词(KeyWords): “华龙一号”;腐蚀产物;运行数据;对数正态分布;CAMPSIS
基金项目(Foundation): 国家自然科学基金针对堆芯氧化腐蚀产物材料-热工-中子行为的多物理耦合机理研究(U20B2011);; 中国广核集团压水堆燃料运行零破损关键技术研究(No.3100121513)
作者(Author): 张晓茜,付鹏涛
参考文献(References):
- [1] Rocher A, Bretelle J L, Berger M.Impact of Main Radiological Pollutants on Contamination Risks(ALARA).Optimization of Physico Chemical Environment and Retention Technics during Operation and Shutdown[C]. European Workshop on Occupational Exposure Management at NPPs,France,2003.
- [2] BOUHRIZI S. UK EPR PCSR-Sub-Chapter 11.1-Sources of radioactive materials[R],UK EPR-0002-111 Issue05,2012.
- [3]樊治国,问清华,李睿容,等.大亚湾核电站1994~2002年职业性照射个人剂量监测和评价[J].辐射防护,2004,24(3-4):206-210.
- [4]阎鸿邦.放射性废物管理[J].环境科学动态,1990,4:9-12.
- [5] Powell A S,Parry S J,Banks A J,et al. The Challenges of Modelling Corrosion Product Transport in PWRs[C].NPC2016,Brighton,UK,2016.
- [6] Robertson J. Modeling of Corrosion and Corrosion Release in PWR Primary Circuit[C]. Proceedings of International Conference on Water Chemistry of Nuclear Power Systems5,BNES,London,1989.
- [7] Beslu P, Frejaville G, Lalet A, A computer code PACTOLE to Predict Activation and Transport of Corrosion Products in a PWR.Water Chemistry of Nuclear Reactor Systems[C]. Proceedings of an international conference organized by the British Nuclear Energy Society,Bournemouth,24-27 October,1977.
- [8] Dacquait F,Nguyen F,Marteau H,et al.Simulations of Corrosion Product Transfer with the PACTOLE V3.2Code[C]. Proceedings of the International Conference of Water Chemistry Nuclear Reactor Systems, Berlin,2008.
- [9]方岚,徐春艳,刘新华,等.压水堆核电站一回路活化腐蚀产物源项控制措施探讨[J].辐射防护,2012,32(1):008-014.
- [10] Hirotaka Kawamura. Empirical Fuel CRUD Deposition Model in Simulated PWR Primary Water[C]. NPC2016,Brighton,UK,2016.
- [11] Sabol G P,Secker J R,Kunishi H,et al. Characterization of Corrosion Product Deposits on Fuel in High-Temperature Plants[C]. International Conference on Water Chemistry in Nuclear Reactor Systems,Avignon,2002.
- [12] Bernt Bengtsson,Per-Olof Aronsson,Stefan Larsson and Per-Olof Andersson.Experiences with Elevated pH and Lithium in Ringhals PWRs[R]. NPC2008, Berlin,Germany,2008.
- [13] EPRI. Experience With Elevated pH at the Millstone Point3 PWR[R]. EPRI Technical Report,105345,1995.
- [14] Esposito J et al. The addition of zinc to primary reactor coolant for enhanced PWSCC resistance[C]. Fifth International Symposium on Environmental degradation of Materials in Nuclear Power Systems-Water reactors,Monterey,CA,August 1991.
- [15] CGN. CAMPSIS-A Crud Behavior Analysis Code:Verification and Validation Report[R]. GHX00600168DRAF02TR,Rev.A,2020.