某采用延伸运行模式的压水堆CIPS风险评估CIPS Risk Assessment of a Pressurized Water Reactor under Stretch-Out Operation
陈天铭,阮天鸣,胡艺嵩,蒙舒祺
摘要(Abstract):
压水堆(Pressurized Water Reactor,PWR)功率运行期间一回路中的腐蚀产物会生成反应堆污垢(Chalk Rivers Unidentified Deposit,CRUD),引起硼在CRUD中析出,增大垢致轴向功率偏移(Crud Induced Power Shift,CIPS)的风险。延伸运行(Stretch-Out,SO)是反应堆的一种灵活运行方式,能够提高反应堆的经济性。本文介绍了PWR硼析出分析模型,并研究了SO工况对CRUD和硼析出量的影响,最终对其CIPS风险做出评估。计算结果表明,SO工况可以减少PWR的CRUD总量和厚度,并且有利于降低下一燃料循环初期的硼析出量,进而降低CIPS风险。研究成果为PWR在SO期间的CRUD和CIPS风险控制提供了理论依据和数据参考。
关键词(KeyWords): 压水堆;延伸运行;反应堆污垢;硼析出;垢致轴向功率偏移
基金项目(Foundation): 国家自然科学基金(U20B0211,针对堆芯氧化腐蚀产物材料-热工-中子行为的多物理耦合机理);国家自然科学基金(52171085,模拟压水堆一回路冷却剂中燃料包壳管表面污垢沉积行为与机理研究)
作者(Author): 陈天铭,阮天鸣,胡艺嵩,蒙舒祺
参考文献(References):
- [1] Deshon J. PWR Axial Offset Anomaly(AOA)Guidelines[R]. EPRI Technical Report,1008102,2004.
- [2] Riess R. Chemistry experience in the primary heat transfer circuit of Kraftwerk union pressurized water reactors[M]. Nuclear Technology,Taylor&Francis Group,2017:153-159.
- [3]蒙舒祺,胡艺嵩,李昌莹,等.一种压水堆CIPS风险评估方法[J].核技术,2021,44(09):86-91.
- [4] Frattini P,Blandford E,Hussey D,et al. Modelling axial offset anomaly[C]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems,San Francisco,USA,October 2004.
- [5] Byers A.,Deshon J. Structure and chemistry of PWR CRUD[C.] Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems, San Francisco,USA,October 2004.
- [6]尹浪,吴迪,申中祥,等. M310型压水堆核电厂延伸运行专项研究[J].科技创新导报,2020,8:47-48,50.
- [7] Wang G., et al. Westinghouse Advanced Loop Tester(WALT)Update[C]. 16th International Conference on Nuclear Engineering,2008.
- [8]杨萍,汤春桃. AP1000核电厂首循环CIPS风险评价[J].核科学与工程,2012,32(03):284-288.
- [9]杨建锋,秦慧敏,刘婵云.压水堆一回路应用富集硼酸对堆芯CIPS影响的研究[J].核科学与工程,2020,40(06):932-936.
- [10]王家梅,Arjmand F.,杜海东,等.压水堆一回路主管道316L不锈钢的电化学腐蚀行为[J].工程科学学报,2017,9:1355-1363.
- [11]段振刚,杜海东,王力,等. 690合金和800合金在含锌PWR一回路水中的均匀腐蚀行为研究[J].腐蚀科学与防护技术,2014,3:218-222.
- [12]蒙舒祺,阮天鸣,胡艺嵩,等.一种核电金属材料腐蚀释放模型的开发及验证[C].中国核学会核材料分会2020学术年会暨中国核学会核材料分会成立40周年纪念大会,沈阳,2020.
- [13] Kang S., Sejvar J. The CORA-Ⅱmodel of PWR corrosion-product transport[R]. EPRI Technical Report,1985.
- [14] Byron R. Bird,Warren E. Stewart,Edwin N. Lightfoot.Transport Pheomena,2nd Edition,Department of Chemical Engineering,University of Wisconsin,2002.
- [15] Speight J. G. Lange’s handbook of chemistry,sixteenth edition[M]. The McGraw-Hill Companies,2005.
- [16] RUMMERY T. E., Macdonald D. D. Prediction of corrosion product stability in high temperature aqueous systems[J]. Journal of Nuclear Materials,1975,55(1):23-32.
- [17] Chen C. M.,Aral K.,Theus G. J. Computer-calculated potential pH diagrams to 300℃[R]. EPRI Technical Report,EPRI-NP--3137-Vol. 3,1983.
- [18] Beverskog B., Puigdomenech I., Revised Pourbaix diagrams for chromium at 25~300℃[J]. Corrosion Science,1997,39(1):43-57.
- [19] Beverskog B., Puigdomenech I., Revised Pourbaix diagrams for iron at 25~300℃[J]. Corrosion Science,1997,38(12):2121-2135.
- [20] Beverskog B., Puigdomenech I., Revised Pourbaix diagrams for nickel at 25~300℃[J]. Corrosion Science,1997,39(5):969-980.
- [21] Huang J., Wu X., Han E. H. Influence of pH on electrochemical properties of passive films formed on alloy690 in high temperature aqueous environments[J]. Corrosion Science,2009,51(12):2976-2982.
- [22] Haq I.,Cinosi N.,Bluck M.,et al. Modelling Heat Transfer and Dissolved Species Concentrations within PWR Crud[J]. Switzerland:Nuclear Engineering and Design,2011,241(1):155-162.
- [23] Henshaw J.,McGurk J. C.,Sims H. E.,et al. A Model of Chemistry and Thermal Hydraulics in PWR Fuel Crud Deposits[J]. Netherlands:Journal of nuclear materials,2005,353(1-2):1-11.
- [24] Cussler. E. L.扩散流体系统中的传质[M]. 2版.北京:化学工业出版社,2002:70.
- [25]中广核研究院有限公司,中国广核集团有限公司,中国广核电力股份有限公司.污垢行为分析软件[简称:CAMPSIS]V1. 0[CP].中国:2021SR0623899,2021.
- [26]白宁,朱元兵,任志豪,等.子通道分析程序LINDEN的开发与初步验证[J].原子能科学技术,2013,47(Z1):299-301.